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PROCESS SCHEDULING 

 In a single-processor system, only one process can run at 

a time; any others must wait until the CPU is free and 

can be rescheduled.  

 The objective of multiprogramming is to have some 

process running at all times, to maximize CPU 

utilization. 

 Several processes are kept in memory at one time.  

 When one process has to wait, OS takes the CPU away 

from that process and gives the CPU to another process. 

This pattern continues.  

 Every time one process has to wait, another process can 

take over use of the CPU. 
 

CPU-I/O Burst Cycle 

 Process execution consists of a cycle of CPU execution 

and I/0 wait.  

 Processes alternate between these two states.  

 Process execution begins with a CPU burst. 

 That is followed by an I/O burst, which is followed by 

another CPU burst and so on.  

 Eventually, the final CPU burst ends with a system 

request to terminate execution 
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CPU Scheduler 
 

 Whenever the CPU becomes idle, the OS must select one 

of the processes in the ready queue to be executed.  

 The selection process is carried out by the short-term 

scheduler (or CPU scheduler).  

 The scheduler selects a process from the processes in 

memory that are ready to execute and allocates the CPU 

to that process. 

 The ready queue is not necessarily a first-in, first-out 

(FIFO) queue. 

 A ready queue can be implemented as a FIFO queue, a 

priority queue, a tree, or simply an unordered linked list.  

 All the processes in the ready queue are lined up waiting 

for a chance to run on the CPU.  

 The records in the queues are generally process control 

blocks (PCBs) of the processes. 
 

Preemptive Scheduling 
 

 CPU-scheduling decisions may take place under the 

following four circumstances: 
 

1. When a process switches from the running state to 

the waiting state (for example, as the result of an I/O 

request or an invocation of wait() for the termination 

of a child process) 
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2. When a process switches from the running state to 

the ready state (for example, when an interrupt 

occurs) 

3. When a process switches from the waiting state to 

the ready state (for example, at completion of I/O) 

4. When a process terminates 

 When scheduling takes place only under circumstances 1 

and 4, we say that the scheduling scheme is non-

preemptive or cooperative. Otherwise, it is preemptive. 

 So scheduling scheme can be of 2 types: Preemptive & 

Non Preemptive 

 Non-preemptive scheduling: once the CPU has been 

allocated to a process, the process keeps the CPU until it 

releases the CPU either by terminating or by switching to 

the waiting state. 

 Non-preemptive scheduling is also called cooperative 

scheduling 

 Preemptive scheduling: A running process may be 

preempted with a higher priority process 

 Preemptive scheduling may lead to data inconsistency 

(race condition). 

 Consider the case of two processes that share data. While 

one is updating the data, it is preempted so that the second 

process can run. The second process then tries to read the 

data, which are in an inconsistent state. In such situations, 
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we need new mechanisms to coordinate access to shared 

data 

 Preemption also affects the design of the OS kernel.  

 During the processing of a system call, the kernel may 

involve changing important kernel data (for eg, I/0 

queues). What happens if the process is preempted in the 

middle of these changes and the kernel (or the device 

driver) needs to read or modify the same structure?  

 Conflicts may occur. Certain OS deal with this problem by 

waiting either for a system call to complete or for an I/O 

block to take place before doing a context switch.  

 This scheme ensures that the kernel structure is simple, 

since the kernel will not preempt a process while the kernel 

data structures are in an inconsistent state.  

 Unfortunately, this kernel-execution model is a poor one 

for supporting real-time computing 
 

Dispatcher 
 

 Another component involved in the CPU-scheduling 

function is the dispatcher. 

 The dispatcher is the module that gives control of the 

CPU to the process selected by the short-term scheduler.  

 This function involves the following: 

1. Switching context 

2. Switching to user mode 
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3. Jumping to the proper location in the user 

program to restart that program 

 The dispatcher should be as fast as possible, since it is 

invoked during every process switch.  

 The time it takes for the dispatcher to stop one process 

and start another running is known as the dispatch 

latency. 
 

SCHEDULING CRITERIA 

 Different CPU-scheduling algorithms have different 

properties 

 Many criteria have been suggested for comparing CPU-

scheduling algorithms. 

 These criteria are used for comparison and judgment 

which algorithm is to be best.  

 The criteria are: 
 

1. CPU utilization: We want to keep the CPU as busy as 

possible. CPU utilization can range from 0 to 100 

percent. In a real system, it should range from 40 percent 

(for a lightly loaded system) to 90 percent (for a heavily 

used system). 

2. Throughput: If the CPU is busy executing processes, 

then work is being done. One measure of work is the 

number of processes that are completed per time 

unit, called throughput. For long processes, this rate 
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may be one process per hour; for short transactions, it 

may be ten processes per second. 

3. Turnaround time: About a particular process, the 

important criterion is how long it takes to execute that 

process. The interval from the time of submission of a 

process to the time of completion is the turnaround 

time. Turnaround time is the sum of the periods spent 

waiting to get into memory, waiting in the ready queue, 

executing on the CPU, and doing I/0. 

4. Waiting time: Waiting time is the sum of the periods 

spent waiting in the ready queue. 

5. Response time: In an interactive system, turnaround 

time may not be the best criterion. Often, a process can 

produce some output fairly early and can continue 

computing new results while previous results are being 

output to the user. Thus, another measure is the time 

from the submission of a request until the first 

response is produced. This measure, called response 

time, is the time it takes to start responding. The 

response time is generally limited by the speed of the 

output device. 

 It is desirable to maximize CPU utilization and 

throughput and to minimize turnaround time, 

waiting time, and response time.  

 In most cases, we optimize the average measure. 

However, under some circumstances, it is desirable to 
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optimize the minimum or maximum values rather than 

the average.  

 For example, to guarantee that all users get good service, 

we may want to minimize the maximum response time. 

 It is more important to minimize the variance in the 

response time than to minimize the average response 

time.  

 A system with reasonable and predictable response time 

may be considered more desirable than a system that is 

faster on the average but is highly variable. 
 

SCHEDULING ALGORITHMS 

 

1. First-Come, First-Served Scheduling (FCFS) 

2. Shortest-Job-First Scheduling (SJF) 

3. Priority Scheduling 

4. Round-Robin Scheduling (RR) 
 

 

First-Come, First-Served Scheduling (FCFS) 
 

 Simplest scheduling algorithm 

 The process that requests the CPU first is allocated the 

CPU first.  

 The implementation is easily managed with a FIFO 

queue.  

 When a process enters the ready queue, its PCB is linked 

onto the tail of the queue. When the CPU is free, it is 
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allocated to the process at the head of the queue. The 

running process is then removed from the queue.  

 The code for FCFS scheduling is simple to write and 

understand. 

 On the negative side, the average waiting time under the 

FCFS policy is often quite long.  

 Consider the following set of processes that arrive at 

time 0, with the length of the CPU burst given in 

milliseconds: 

 

 If the processes arrive in the order P1, P2, P3, and are 

served in FCFS order, we get the result shown in the 

following Gantt chart 

 Gantt chart is a bar chart that illustrates a particular 

schedule, including the start and finish times of each of 

the participating processes: 

 

 The waiting time is 0 milliseconds for process P1, 24 

milliseconds for process P2, and 27 milliseconds for 

process P3.  
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 Thus, the average waiting time is (0 + 24 + 27)/3 = 17 

milliseconds.  

 If the processes arrive in the order P2, P3, P1, the results 

will be as shown in the following Gantt chart: 

 

 The average waiting time is now (6 + 0 + 3)/3 = 3 

milliseconds. This reduction is substantial.  

 Thus, the average waiting time under an FCFS policy is 

generally not minimal and may vary substantially if the 

processes’ CPU burst times vary greatly. 

 Assume we have one big CPU-bound process and many 

small I/O-bound processes.  

 As the processes flow around the system, the following 

scenario may result.  

 The CPU-bound process will get and hold the CPU. 

During this time, all the other processes will finish their 

I/O and will move into the ready queue, waiting for the 

CPU.  

 While the processes wait in the ready queue, the I/O 

devices are idle. Eventually, the CPU-bound process 

finishes its CPU burst and moves to an I/O device. All 

the I/O-bound processes, which have short CPU bursts, 

execute quickly and move-back to the I/O queues. At 

this point, the CPU sits idle. The CPU-bound process 
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will then move back to the ready queue and be allocated 

the CPU.  

 Again, all the I/O processes end up waiting in the ready 

queue until the CPU-bound process is done. This is 

called convoy effect as all the other processes wait for 

the one big process to get off the CPU.  

 This effect results in lower CPU and device utilization 

than might be possible if the shorter processes were 

allowed to go first. 

 FCFS scheduling algorithm is nonpreemptive.  

 Once the CPU has been allocated to a process, that 

process keeps the CPU until it releases the CPU, either 

by terminating or by requesting I/O.  

 The FCFS algorithm is thus troublesome for time-

sharing systems, where it is important that each user get 

a share of the CPU at regular intervals.  

 It would be disastrous to allow one process to keep the 

CPU for an extended period. 
 

Shortest-Job-First Scheduling (SJF) 
 

 This algorithm depends on the length of the process’s 

next CPU burst.  

 When the CPU is available, it is assigned to the process 

that has the smallest next CPU burst.  

 If the next CPU bursts of two processes are the same, 

FCFS scheduling is used to break the tie.  
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 More appropriate term for this scheduling method would 

be the shortest-next-CPU-burst algorithm, because 

scheduling depends on the length of the next CPU burst 

of a process, rather than its total length. 

 Consider the following set of processes, with the length 

of the CPU burst given in milliseconds: 

 

 Using SJF scheduling, we would schedule these 

processes according to the following Gantt chart: 

 

 The waiting time is 3 milliseconds for process P1, 16 

milliseconds for process P2, 9 milliseconds for process 

P3, and 0 milliseconds for process P4.  

 Thus, the average waiting time is (3 + 16 + 9 + 0)/4 = 7 

milliseconds.  

 By comparison, if we were using the FCFS scheduling 

scheme, the average waiting time would be …… 

milliseconds. 

   <<<<HOME WORK>>> 
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 The SJF scheduling algorithm is optimal, in that it gives 

the minimum average waiting time for a given set of 

processes.  

 Moving a short process before long one decrease the 

waiting time of the short process more than it increases 

the waiting time of the long process.  

 Consequently, the average waiting time decreases. 

 The real difficulty with the SJF algorithm is knowing 

the length of the next CPU request. 

 Although the SJF algorithm is optimal, it cannot be 

implemented at the level of short-term CPU scheduling. 

 With short-term scheduling, there is no way to know the 

length of the next CPU burst.  

 One approach to this problem is to try to approximate 

SJF scheduling.  

 We may not know the length of the next CPU burst, but 

we may be able to predict its value.  

 We expect that the next CPU burst will be similar in 

length to the previous ones.  

 By computing an approximation of the length of the 

next CPU burst, we can pick the process with the 

shortest predicted CPU burst. 

 The next CPU burst is generally predicted as an 

exponential average of the measured lengths of 

previous CPU bursts.  
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 We can define the exponential 

 

 

 The SJF algorithm can be either preemptive or 

nonpreemptive.  
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 The choice arises when a new process arrives at the 

ready queue while a previous process is still executing. 

 The next CPU burst of the newly arrived process may be 

shorter than what is left of the currently executing 

process. 

 A preemptive SJF algorithm will preempt the currently 

executing process, whereas a nonpreemptive SJF 

algorithm will allow the currently running process to 

finish its CPU burst. 

 Preemptive SJF scheduling is sometimes called shortest-

remaining-time-first scheduling. (SRTF) 

 As an example, consider the following four processes, 

with the length of the CPU burst given in milliseconds: 

 

 If the processes arrive at the ready queue at the times 

shown and need the indicated burst times, then the 

resulting preemptive SJF schedule is as depicted in the 

following Gantt chart: 

 



15 | P a g e                                                     D e p t  o f  C S E ,  M B I T S  

 

 Process P1 is started at time 0, since it is the only 

process in the queue. Process P2 arrives at time 1. The 

remaining time for process P1 (7 milliseconds) is larger 

than the time required by process P2 (4 milliseconds), so 

process P1 is preempted, and process P2 is scheduled. 

The average waiting time for this example is [(10 − 1) + 

(1 − 1) + (17 − 2) + (5 − 3)]/4 = 26/4 = 6.5 milliseconds. 

 Nonpreemptive SJF scheduling would result in an 

average waiting time of …….. milliseconds. 

<<<<HOME WORK>>>> 

 

PRIORITY SCHEDULING 
 

 A priority is associated with each process, and the CPU 

is allocated to the process with the highest priority.  

 Equal-priority processes are scheduled in FCFS order. 

 The SJF algorithm is a special case of the general 

priority scheduling algorithm. 

 An SJF algorithm is simply a priority algorithm where 

the priority (p) is the inverse of the (predicted) next CPU 

burst.  

 The larger the CPU burst, the lower the priority, and vice 

versa. 

 There is no general agreement on whether 0 is the 

highest or lowest priority.  
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 Some systems use low numbers to represent low priority; 

others use low numbers for high priority.  

 Here we assume that low numbers represent high 

priority. 

 As an example, consider the following set of processes, 

assumed to have arrived at time 0 in the order P1, P2, · · 

·, P5, with the length of the CPU burst given in 

milliseconds: 

 

 
Solution: 

 
 Average waiting time is (6+0+16+18+1)/5 = 8.2 mS 

 Priorities can be defined either internally or externally. 

 Example for internal priorities: time limits, memory 

requirements, the number of open files, and the ratio of 

average I/0 burst to average CPU burst etc. 

 External priorities are set by criteria outside the OS, such 

as the importance of the process, the type and amount of 
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funds being paid for computer use, the department 

sponsoring the work, and other political factors etc. 

 Priority scheduling can be either preemptive or non-

preemptive.  

 When a process arrives at the ready queue, its priority is 

compared with the priority of the currently running 

process. A preemptive priority scheduling algorithm will 

preempt the CPU if the priority of the newly arrived 

process is higher than the priority of the currently 

running process.  

 A non-preemptive priority scheduling algorithm will 

simply put the new process at the head of the ready 

queue. 

Drawback 

 A major problem with priority scheduling algorithms is 

indefinite blocking, or starvation. 

 A priority scheduling algorithm can leave some low 

priority processes waiting indefinitely. 

 In a heavily loaded computer system, a steady stream of 

higher-priority processes can prevent a low-priority 

process from ever getting the CPU. 

 A solution to the problem of indefinite blockage of 

low-priority processes is aging.  

 Aging is a technique of gradually increasing the priority 

of processes that wait in the system for a long time. 



18 | P a g e                                                     D e p t  o f  C S E ,  M B I T S  

 

 For eg. We can increase the priority of a waiting process 

by 1 in every 15 minutes. Eventually, even a process 

with lowest priority would have the highest priority in 

the system and would be executed. 

 

ROUND ROBIN SCHEDULING (RR) 

 The round-robin (RR) scheduling algorithm is 

designed especially for time sharing systems. 

 A small unit of time, called a time quantum or time 

slice, is defined. 

 The ready queue is treated as a circular queue. 

 The CPU scheduler goes around the ready queue, 

allocating the CPU to each process for a time interval of 

up to 1 time quantum. 

 We keep the ready queue as a FIFO queue of processes. 

New processes are added to the tail of the ready queue. 

The CPU scheduler picks the first process from the ready 

queue, sets a timer to interrupt after 1 time quantum, and 

dispatches the process. 

 One of two things will then happen.  

 The process may have a CPU burst of less than 1 time 

quantum. In this case, the process itself will release the 

CPU voluntarily. The scheduler will then proceed to the 

next process in the ready queue.  



19 | P a g e                                                     D e p t  o f  C S E ,  M B I T S  

 

 Otherwise, if the CPU burst of the currently running 

process is longer than 1 time quantum, the timer will go 

off and will cause an interrupt to the OS. A context 

switch will be executed, and the process will be put at 

the tail of the ready queue.  

 The CPU scheduler will then select the next process in 

the ready queue. 

 The average waiting time under the RR policy is 

often long.  

 Consider the following set of processes that arrive at 

time 0, with the length of the CPU burst given in 

milliseconds: 

 

 If we use a time quantum of 4 milliseconds, then 

process P1 gets the first 4milliseconds. Since it requires 

another 20 milliseconds, it is preempted after the first 

time quantum, and the CPU is given to the next process 

 Once each process has received 1 time quantum, the 

CPU is returned to process P1 for an additional time 

quantum. The resulting RR schedule is as follows: 
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 P1 waits for 6 milliseconds (10- 4), P2 waits for 4 

milliseconds, and P3 waits for 7 milliseconds. Thus, the 

average waiting time is 17/3 = 5.66 milliseconds. 

 In the RR scheduling algorithm, no process is allocated 

the CPU for more than 1 time quantum in a row (unless 

it is the only runnable process).  

 If a process's CPU burst exceeds 1 time quantum, that 

process is preempted and is put back in the ready queue. 

The RR scheduling algorithm is thus preemptive. 

 The performance of the RR algorithm depends 

heavily on the size of the time quantum.  

 If the time quantum is extremely large, the RR policy 

is the same as the FCFS policy.  

 If the time quantum is extremely small (say, 1 

millisecond), the RR approach is called processor 

sharing. 

 Also we need to consider the effect of context switching 

on the performance of RR scheduling. Assume, for 

example, that we have only one process of 10 time units. 

If the quantum is 12 time units, the process finishes in 

less than 1 time quantum, with no overhead. If the 

quantum is 6 time units, the process requires 2 quanta, 

resulting in a context switch. If the time quantum is 1 

time unit, then nine context switches will occur, slowing 

the execution of the process accordingly.  



21 | P a g e                                                     D e p t  o f  C S E ,  M B I T S  

 

 We want the time quantum to be large with respect to the 

context switch time. If the context-switch time is 

approximately 10 percent of the time quantum, then 

about 10 percent of the CPU time will be spent in 

context switching. 

 


